Excited-state hydrogen relay along a blended-alcohol chain as a model system of a proton wire: deuterium effect on the reaction dynamics.

نویسندگان

  • Sun-Young Park
  • Du-Jeon Jang
چکیده

The excited-state deuteron transfer (ESDT) of deuterated 7-hydroxyquinoline (7DQ) along a heterogeneous hydrogen (H)-bonded chain composed of two deuterated alcohol (ROD) molecules having different acidities, as a model system of a proton wire consisting of diverse amino acids, has been investigated. To understand dynamic differences between deuteron transfer and proton transfer, solvent-inventory experiments have been performed with variation of the combination as well as the composition of alcohols in a H-bonded mixed-alcohol chain. Deuteron transfer from the adjacent ROD molecule to the basic imino group of 7DQ via tunneling, which is the rate-determining step, initiates ESDT, and subsequent barrierless deuteron relay from the acidic enolic group of 7DQ to the alkoxide moiety along the H-bonded chain completes ESDT. Whereas the acceleration of the reaction has been observed in excited-state proton transfer because of the accumulated proton-donating abilities of two alcohol molecules in a H-bonded chain by a push-ahead effect, such acceleration is not observed in ESDT. Because the energy barrier of deuteron relay is much higher than that of proton relay due to the low zero-point energy of 7DQ·(ROD)(2) and a deuteron is twice as heavy as a proton, it is hard for a deuteron to pass through the barrier via tunneling. Moreover, both the H-bonding ability and the acidity of ROD molecules are so weak that their deuteron-donating abilities cannot be accumulated at the rate-determining step of ESDT. Consequently, the rate constant of ESDT is determined mostly by the acidity of the ROD molecule H-bonded directly to the imino group of 7DQ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton diffusion dynamics along a diol as a proton-conducting wire in a photo-amphiprotic model system.

We investigated the dynamics of excited-state proton transfer (ESPT) of photo-amphiprotic 7-hydroxyquinoline (7HQ) in the presence of a hydrogen (H)-bond bridging diol in a polar aprotic medium. The formation of 1 : 1 H-bonded complexes of 7HQ with various diols of different alkane chain lengths was revealed using steady-state electronic spectroscopy. With femtosecond-resolved fluorescence spec...

متن کامل

به کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم

Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...

متن کامل

Excited-state proton-relay dynamics of 7-hydroxyquinoline controlled by solvent reorganization in room temperature ionic liquids.

The excited-state triple proton relay of 7-hydroxyquinoline (7HQ) along a hydrogen-bonded methanol chain in room temperature ionic liquids (RTILs) has been investigated using picosecond time-resolved fluorescence spectroscopy. The rate constant of the proton relay in a methanol-added RTIL is found to be slower by an order of magnitude than that in bulk methanol and to have unity in its kinetic ...

متن کامل

Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements.

We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing ac...

متن کامل

Photoinduced homogeneous proton-coupled electron transfer: model study of isotope effects on reaction dynamics.

A model Hamiltonian for photoinduced homogeneous proton-coupled electron transfer reactions is presented, and the equations of motion for the reduced density matrix elements in an electron-proton vibronic basis are derived. This formalism enables a detailed analysis of the proton vibrational dynamics, as well as the dynamics of the electronic state populations, following photoexcitation. The ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 25  شماره 

صفحات  -

تاریخ انتشار 2012